
Math 451: Introduction to General Topology
Lecture 8

Criterior for completeness. For a metric
space
(

,
d)

,
TFAE :

1) (X, d) is complete.

(2) Every C-decreasing sequence (n) of closedonempts of X of vanishing diameter, i.. e.

lim diam((n) = O
(

h-s

has a nonemptly intersection : A Cu +0.
nEI

13) Every decreasing sequence (Bu) of closed balls in X of vanishing diameter has a

nonempty intersection : ABu + 0.
NEIN

Proof
.

(2) => (3)
.
Trivial because closed balls are closed sets.

(1) => (2)· Suppose N ,
d) is complete and let (2) be a decreasing sequence of closed sets of vanishing

(xu) with Xuzda for each neIN
.
Then for each u,diamater

.

Use Ad do get a requence
Cothe tail 4xu ,

Xu+y
, ...
) E In because [C+ Cum ...

Here
% Inox

X,

diam (xn , Xn+ 1 . . . ) < Diam ((n) -> O as ned
,

so (x) is Candy ,
heare converges to some -EX. But for each ne IN

,
Exa

,Yuey, ... 3 . En

and converges to X
,

so XECn become ha is closed. Thus
, **

(2)= (1)
.

Assume (2) and let (x2) EX be Carchy ,
i.

. e
. diam(xu , Xuey ... ) -> 0 as n -> &.

Then Cu : = (xn
,
Xu + y

,
... ) are decreasing closed nonempty ots of vanishing diameter

becue
,

as shown last time
,
diam((n) = diam (x ,

Xu+y...7 -> 0 as new
.

Tus,

=> x &Cu
.

But then d(x , xn) < diam (u) -> 0 as-> &
, solinxu = X

.

UEIN

(31- (1) . Let (xu) be a Carchy sequence.

Acceleration trick
.

Since aCarey requence converges if some subsequence of it converges, we

may more to any subsequence and convergencefor that. We choose the following subsequence:

Let no be large enough so that diam (no, not ,
...] > 1

. Suppose nown .... us are choosen,
I

-

and take as Mar Up a large enough number such that diam)/nee , Xant .... ) < 2-3+

Then diam & XMp , Xan s Yes - 3 <2- Moving do this subsequence ,
we

may
assume WLOh



that the original sequence satisfied diam /Xn
,

Ques
,
Xuen

, ... 3) I"to begin with,
so we don't carry the double-indices with us.

Nor assume diam /Xu
,

Ques
,
Xuen

, ... 3 > I"for all neI and take

Bu : = Baarn(Xn) .

Then Br & But becase &kn
, Xuti) > 2-1o if yeButc = By . zanell

(u+)
,
then

& ly ,
Xu + 1) = 2 . 2

+)
= 2-4

,
hence

d (xn
,
b) = d(xn

,
xn+1) + d(xu

+x , y))2-
"

+ 2
-"

= 2 . 24
so y + B2 . z

-
n(Xa) = Bu

. Finally ,
since diam (Bul < 2 . 2 .2 -> 0 as nas &

,
F xEMB

QEDThen d(x
,
Xu) = diam (Bul> 0 as has &

,
so limx = X

-

n-&

Caution. The vanishing diameter condition is absolutely necessary , contrary to one's intuition.

For example ,

take the 01-metric d on X := IN
.

Then this is a comlete

metric
space as discussed lasttime. However

,
Cu : = In ,

ne
,

net
,

.. ) is

a closed set Levery subset of IN is closed because every
subset is open since every

singleton(u) = By(n) is open) .

Diam Kn) = 1 Go all neIN
,

so diamka)-O
and A Cu = 0 .

EIN
Another example shows the failure of 13) with balls

,

and is left as HW.

Examples of complete spaces.

(a) IR with the usual metric is complete.
Proof

.
Let (Ba) be a decreasing sequence of closed balls in IR

.

Thus
,
Bu = Can

,
but

for come reals an On .

Then RoRIEAn ....... On :bu ... Go
,

so (u) is boan-

I
ded above (by say bot and (bul is bounded below

do a ,
andi-bab

, 60 By say No
,
hence a supan and b= influ exists.

UV

But then for each new
, QusaDbu and and babu

,
so an az8Ou,

hence $[a ,b]2l Can ,
bu] ·

NEIN

1) For ench monempty ctblI ,

I is complete .
No Pl



Prop .
Let (X, d) be a complete metric space. Any subset YEX is closed < (4

,
d) is complete.

Propf. =3. Let (ya) ? Y be a lauchy requence .

Since X is complete,
lyn) has a limit xeX.

But Y is closed 10 XEY heare (yu) converges in (4
,
d) to xEY.

E
.
Let (ynh *Y converging to a point xEX. In particular, lya) is Canchy ,

so by the

completeness of Y
,
it must have a limit yeY. But then in X

, yut
x and yuxy ,

so by the uniqueness of limit
,

x =yeY .

QED

Def . A completion of a metric space (X
,
d) is a complete metric space (*,) ad that * =X,

& /x = d
,
and the closure of X in K

,
d) is all of X.

Theorem
. Every metric space admits a completion which is unique up

to isometric isonor

phisue ; more precisely, if (*
,

8) and (*) are two completions of N ,
d) When

there is a bijective isometry f:* -X such that flx = idx.

Proof of uniqueness. Suppose .

(, ) and ( ,
2) are two completions, heare XIX

,
X **

and=* and X * = X
.

Define F : * ->* as follows : for each EX
,
take a

Sequence (u)< X converging to and set f(x) : = the limit of Kul inside.

This limit exists since (2) is d-Camely beare (u) converges to in 1
,
d) and

* is complete . We need to show thatf is well-defied
,

i
.

e
.

if (*) -> * in X,
then still the limit of (a) in * is the same as the limit of (a) in X.

But since both (a) and (x2) converse do in (, )
,

we have d(x
,
xn) -> &

as ne O
,

so in X
,
their limits must voincide. *

Y
It remains to verify thatf is as desired.

X

(a) For each xEX
,
f(x) = X since we can take Xn:=x.

16) A is bijective bease wa can construct At exactly the same was
as f

,
but

with 1 andI swapped.

(2) F is an isometry .
Indeed

,
let ,g

EX
,
choose (a)+*, Bul-> "in *Y

so f(x) = limxn in *
, fly) = linyu in X

.

But d, ) = limdx
, y -

n- & h-)&



hind(xn , yul= limdx ,
en =R =dffl QED

The standard proof of the existence of a completion requires taking a quotient by an equivalence
relation . Before we starthis proof , let's quickly review equivalence relations and quotients.

Equivalence relations and quotients .

let X be a set .

A binary relation R on X is just a subset of XV .

Instead of writing (x
, 3) ER,

we often write xRy to emphasize that R is a relation between >and
y . For example,

< is a binary elation on IN
,
but we never write 12

,
7)e

,

and instead we write 227.

A binary relation R on X is called an equivalence relation if it is

(i) reflexive : x Rx for all xEX ;

(ii) symmetric : x Ry => yRx fr all x
, yEX ;

(iii) transitive : (xRy and yRz) => X Ry for all x
, 3 ,
zeX.

For each x EX
,
call the set

(x]r : = (y(X : x Ryb
the R-class 100 R-equivalence class) of x .

The main statement is :

Prop . Any two R-classes (x]R and Egiz are either equal or disjoint.
Proof

. Suppose Reclasses (xJR and Lyi are not disjoint , 52t[x]i1ly]p ,

and we show that

(x)R = (y)r . By definition , zc[x]R means XRz and zely]p means yRz . By symmetry ,
> Ry,

so by transitivity , x Ry since XRz and Ey . This implies that lyhp = #R because if utly]R,
Men yRu hence xRe (i . e

. neEx]p) by transitivity ,
since xRy . By symmetry ,

we also

have yex ,
so by the same argument ,

[x]p = (j]p ,
hence Gi = G]R. QED

Demote by X/R the set of R-classes and call it the quotient of X by R. By reflexivity , x [X]R
for all xEX .

This and the last proposition together imply that X/R is a partition of X : X
X =LC

,

- ,

CEX/1
where L indicates that the union is disjoint.

R-classes



Conversely , given a partition D of X
,

:. e .

X = XP
,
define a binary relation R on

X

By setting xRy :z) x anda belong he came P in D
.
This is easily verified

to be an equivalence relation whose classes are exactly the cells P of the partition &.
Thus

, equivalence relations on X are in one-to-one correspondence with partidious of X.

Lastly ,
lettingI be an equivalence relation on X

,
we define the quotient map in : X-> XR by

X((X)R .

Example (Rational numbers) · Assume we have defined IN and I
.

Ment in Q ? Well,
,

we write

& for a rational number
,
where nim are integers and meO ,

but then all of a sudden

= m ,
how ! Well, m is not the same as a pair (nm) ; indeed, In,

m) + (3n
,

3m).
Mus

, & + (In ,m) : n
, me and meph =: X . To get & from X we need to "idabify"

pairs like (1
, 2) ,

13
,
6)

,
and 1-7

,
-14)

. Formally ,
this "identification" is just a quotient

by the equivalence relation R on X defied by
In

,
m) R (k

,
1) : ne= km

.

One easily checks Heat R is an equivalence reladion,
and we denobe the quotient X/R by.

We also demote the Rockss of (n
,
m) by

* : = ((n ,m)]r ,

so of course, : (11,2)/r = 17,Jr=: Also , the map- by not is an inject
from and we simply identify & with its image in,

so we consider I as a subsetof


