

Math 451: Introduction to General Topology

Lecture 8

Criterion for completeness. For a metric space (X, d) , TFAE:

(1) (X, d) is complete.

(2) Every \subseteq -decreasing sequence (C_n) of closed \checkmark nonempty subsets of X of vanishing diameter, i.e.

$$\lim_{n \rightarrow \infty} \text{diam}(C_n) = 0,$$

has a nonempty intersection: $\bigcap_{n \in \mathbb{N}} C_n \neq \emptyset$.

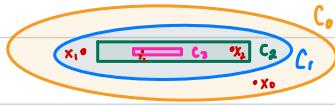
(3) Every \subseteq -decreasing sequence (B_n) of closed balls in X of vanishing diameter has a nonempty intersection: $\bigcap_{n \in \mathbb{N}} B_n \neq \emptyset$.

Proof. (2) \Rightarrow (3). Trivial because closed balls are closed sets.

(1) \Rightarrow (2). Suppose (X, d) is complete and let (C_n) be a decreasing sequence of closed sets of vanishing diameter. Use AC to get a sequence (x_n) with $x_n \in C_n$ for each $n \in \mathbb{N}$. Then for each n ,

the tail $\{x_n, x_{n+1}, \dots\} \subseteq C_n$ because $C_n \supseteq C_{n+1} \supseteq C_{n+2} \supseteq \dots$. Hence

$$\text{diam} \{x_n, x_{n+1}, \dots\} \leq \text{diam}(C_n) \rightarrow 0 \text{ as } n \rightarrow \infty,$$



so (x_n) is Cauchy, hence converges to some $x \in X$. But for each $n \in \mathbb{N}$, $\{x_n, x_{n+1}, \dots\} \subseteq C_n$ and converges to x , so $x \in C_n$ because C_n is closed. Thus, $x \in \bigcap_{n \in \mathbb{N}} C_n$.

(2) \Rightarrow (1). Assume (2) and let $(x_n) \subseteq X$ be Cauchy, i.e. $\text{diam} \{x_n, x_{n+1}, \dots\} \rightarrow 0$ as $n \rightarrow \infty$.

Then $C_n := \{x_n, x_{n+1}, \dots\}$ are decreasing closed nonempty sets of vanishing diameter because, as shown last time, $\text{diam}(C_n) = \text{diam} \{x_n, x_{n+1}, \dots\} \rightarrow 0$ as $n \rightarrow \infty$. Thus, $\exists x \in \bigcap_{n \in \mathbb{N}} C_n$. But then $d(x, x_n) \leq \text{diam}(C_n) \rightarrow 0$ as $n \rightarrow \infty$, so $\lim_{n \rightarrow \infty} x_n = x$.

(3) \Rightarrow (1). Let (x_n) be a Cauchy sequence.

Acceleration trick. Since a Cauchy sequence converges if some subsequence of it converges, we may move to any subsequence and convergence for that. We choose the following subsequence: let n_0 be large enough so that $\text{diam} \{x_{n_0}, x_{n_0+1}, \dots\} < 1$. Suppose $n_0 < n_1 < \dots < n_k$ are chosen, and take as $n_{k+1} > n_k$ a large enough number such that $\text{diam} \{x_{n_{k+1}}, x_{n_{k+1}+1}, \dots\} < 2^{-(k+1)}$. Then $\text{diam} \{x_{n_k}, x_{n_{k+1}}, x_{n_{k+2}}, \dots\} < 2^{-k}$. Moving to this subsequence, we may assume WLOG

that the original sequence satisfied $\text{diam}\{x_n, x_{n+1}, x_{n+2}, \dots\} < 2^{-n}$ to begin with, so we don't carry the double-indices with us.

Now assume $\text{diam}\{x_n, x_{n+1}, x_{n+2}, \dots\} < 2^{-n}$ for all $n \in \mathbb{N}$ and take

$$B_n := \bar{B}_{2 \cdot 2^{-n}}(x_n).$$

Then $B_n \supseteq B_{n+1}$ because $d(x_n, x_{n+1}) < 2^{-n}$ so if $y \in B_{n+1} = B_{2 \cdot 2^{-n+1}}(x_{n+1})$, then

$$d(y, x_{n+1}) \leq 2 \cdot 2^{-n+1} = 2^{-n}, \text{ hence}$$

$$d(x_n, y) \leq d(x_n, x_{n+1}) + d(x_{n+1}, y) < 2^{-n} + 2^{-n} = 2 \cdot 2^{-n},$$

so $y \in \bar{B}_{2 \cdot 2^{-n}}(x_n) = B_n$. Finally, since $\text{diam}(B_n) \leq 2 \cdot 2^{-n} \rightarrow 0$ as $n \rightarrow \infty$, $\exists x \in \bigcap_{n \in \mathbb{N}} B_n$.

Then $d(x, x_n) \leq \text{diam}(B_n) \rightarrow 0$ as $n \rightarrow \infty$, so $\lim_{n \rightarrow \infty} x_n = x$. QED

Caution. The vanishing diameter condition is absolutely necessary, contrary to one's intuition.

For example, take the 0/1-metric d on $X := \mathbb{N}$. Then this is a complete metric space as discussed last time. However, $C_n := \{n, n+1, n+2, \dots\}$ is a closed set (every subset of \mathbb{N} is closed because every subset is open since every singleton $\{n\} = B_{1/2}(n)$ is open). $\text{Diam}(C_n) = 1$ for all $n \in \mathbb{N}$, so $\text{diam}(C_n) \not\rightarrow 0$ and (1) $C_n = \emptyset$.

Another example shows the failure of (3) with balls, and is left as HW.

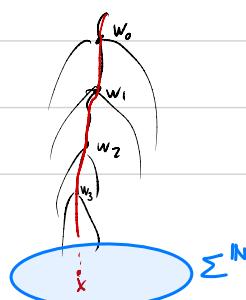
Examples of complete spaces.

(a) \mathbb{R} with the usual metric is complete.

Proof. Let (B_n) be a decreasing sequence of closed balls in \mathbb{R} . Thus, $B_n = [a_n, b_n]$ for some reals $a_n \leq b_n$. Then $a_0 \leq a_1 \leq a_2 \leq \dots \leq b_n \leq b_{n-1} \leq \dots \leq b_0$, so (a_n) is bounded above (by, say b_0) and (b_n) is bounded below (by, say a_0), hence $a := \sup_n a_n$ and $b := \inf_n b_n$ exists.

But then for each $n \in \mathbb{N}$, $a_n \leq a \leq b_n$ and $a_n \leq b \leq b_n$, so $a_n \leq a \leq b \leq b_n$, hence $\emptyset \neq [a, b] \subseteq \bigcap_{n \in \mathbb{N}} [a_n, b_n]$. □

(b) For each nonempty ctbl Σ , $\Sigma^{\mathbb{N}}$ is complete. HW



Prop. Let (X, d) be a complete metric space. Any subset $Y \subseteq X$ is closed $\Leftrightarrow (Y, d)$ is complete.

Proof. \Rightarrow . Let $(y_n) \subseteq Y$ be a Cauchy sequence. Since X is complete, (y_n) has a limit $x \in X$. But Y is closed so $x \in Y$ hence (y_n) converges in (Y, d) to $x \in Y$.

\Leftarrow . Let $(y_n) \subseteq Y$ converging to a point $x \in X$. In particular, (y_n) is Cauchy, so by the completeness of Y , it must have a limit $y \in Y$. But then in X , $y_n \rightarrow x$ and $y_n \rightarrow y$, so by the uniqueness of limit, $x = y \in Y$. QED

Def. A completion of a metric space (X, d) is a complete metric space (\hat{X}, \hat{d}) such that $X \subseteq \hat{X}$, $\hat{d}|_X = d$, and the closure of X in (\hat{X}, \hat{d}) is all of \hat{X} .

Theorem. Every metric space admits a completion which is unique up to isometric isomorphisms; more precisely, if (\hat{X}, \hat{d}) and (\check{X}, \check{d}) are two completions of (X, d) then there is a bijective isometry $f: \hat{X} \rightarrow \check{X}$ such that $f|_X = \text{id}_X$.

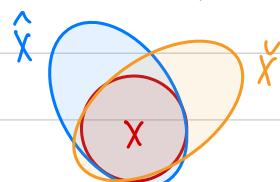
Proof of uniqueness. Suppose (\hat{X}, \hat{d}) and (\check{X}, \check{d}) are two completions, hence $X \subseteq \hat{X}$, $X \subseteq \check{X}$ and $\hat{X}^{\hat{d}} = \hat{X}$ and $\check{X}^{\check{d}} = \check{X}$. Define $f: \hat{X} \rightarrow \check{X}$ as follows: for each $\hat{x} \in \hat{X}$, take a sequence $(x_n) \subseteq X$ converging to \hat{x} and set $f(\hat{x}) :=$ the limit of (x_n) in \check{X} . This limit exists since (x_n) is d -Cauchy hence (x_n) converges to \hat{x} in (\hat{X}, \hat{d}) and \check{X} is complete. We need to show that f is well-defined, i.e. if $(x_n) \rightarrow \hat{x}$ in \hat{X} , then still the limit of (x_n) in \check{X} is the same as the limit of (x_n) in \hat{X} . But since both (x_n) and (x_n) converge to \hat{x} in (\hat{X}, \hat{d}) , we have $\hat{d}(x_n, x_n) \rightarrow 0$ as $n \rightarrow \infty$, so in \check{X} , their limits must coincide.

It remains to verify that f is as desired.

(a) For each $x \in X$, $f(x) = x$ since we can take $x_n := x$.

(b) f is bijective because we can construct f^{-1} exactly the same way as f , but with \wedge and \vee swapped.

(c) f is an isometry. Indeed, let $\hat{x}, \hat{y} \in \hat{X}$, choose $(x_n) \rightarrow \hat{x}, (y_n) \rightarrow \hat{y}$ in \hat{X} , so $f(\hat{x}) = \lim_{n \rightarrow \infty} x_n$ in \check{X} , $f(\hat{y}) = \lim_{n \rightarrow \infty} y_n$ in \check{X} . But $\hat{d}(\hat{x}, \hat{y}) = \lim_{n \rightarrow \infty} \hat{d}(x_n, y_n) =$



$$\lim_{n \rightarrow \infty} d(x_n, y_n) \geq \lim_{n \rightarrow \infty} \tilde{d}(x_n, y_n) = d(\tilde{x}, \tilde{y}) = d(f(\tilde{x}), f(\tilde{y})).$$

QED

The standard proof of the existence of a completion requires taking a quotient by an equivalence relation. Before we start this proof, let's quickly review equivalence relations and quotients.

Equivalence relations and quotients.

Let X be a set. A binary relation R on X is just a subset of X^2 . Instead of writing $(x, y) \in R$, we often write $x R y$ to emphasize that R is a relation between x and y . For example, \leq is a binary relation on \mathbb{N} , but we never write $(2, 7) \in \leq$, and instead we write $2 < 7$.

A binary relation R on X is called an **equivalence relation** if it is

- (i) **reflexive**: $x R x$ for all $x \in X$;
- (ii) **symmetric**: $x R y \Rightarrow y R x$ for all $x, y \in X$;
- (iii) **transitive**: $(x R y \text{ and } y R z) \Rightarrow x R z$ for all $x, y, z \in X$.

For each $x \in X$, call the set

$$[x]_R := \{y \in X : x R y\}$$

the **R -class** (or **R -equivalence class**) of x . The main statement is:

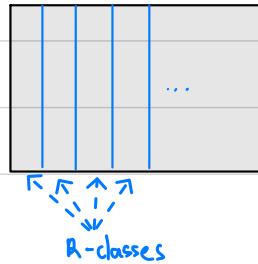
Prop. Any two R -classes $[x]_R$ and $[y]_R$ are either equal or disjoint.

Proof. Suppose R -classes $[x]_R$ and $[y]_R$ are not disjoint, $\exists z \in [x]_R \cap [y]_R$, and we show that $[x]_R = [y]_R$. By definition, $z \in [x]_R$ means $x R z$ and $z \in [y]_R$ means $y R z$. By symmetry, $z R y$, so by transitivity, $x R y$ since $x R z$ and $z R y$. This implies that $[y]_R \subseteq [x]_R$ because if $u \in [y]_R$, then $y R u$ hence $x R u$ (i.e. $u \in [x]_R$) by transitivity, since $x R y$. By symmetry, we also have $y R x$, so by the same argument, $[x]_R \subseteq [y]_R$, hence $[x]_R = [y]_R$. QED

Denote by X/R the set of R -classes and call it the **quotient** of X by R . By reflexivity, $x \in [x]_R$ for all $x \in X$. This and the last proposition together imply that X/R is a partition of X :

$$X = \bigsqcup_{C \in X/R} C,$$

where \bigsqcup indicates that the union is disjoint.



Conversely, given a partition \mathcal{P} of X , i.e. $X = \bigsqcup P$, define a binary relation R on X by setting $x R y \iff x$ and y belong to ^{PEP} the same P in \mathcal{P} . This is easily verified to be an equivalence relation whose classes are exactly the cells P of the partition \mathcal{P} . Thus, equivalence relations on X are in one-to-one correspondence with partitions of X .

Lastly, letting R be an equivalence relation on X , we define the quotient map $\pi: X \rightarrow X/R$ by $x \mapsto [x]_R$.

Example (Rational numbers). Assume we have defined \mathbb{N} and \mathbb{Z} . What is \mathbb{Q} ? Well, we write $\frac{n}{m}$ for a rational number, where n, m are integers and $m \neq 0$, but then all of a sudden $\frac{n}{m} = \frac{3n}{3m}$, how? Well, $\frac{n}{m}$ is not the same as a pair (n, m) ; indeed, $(n, m) \neq (3n, 3m)$. Thus, $\mathbb{Q} \neq \{(n, m) : n, m \in \mathbb{Z} \text{ and } m \neq 0\} =: X$. To get \mathbb{Q} from X we need to "identify" pairs like $(1, 2)$, $(3, 6)$, and $(-7, -14)$. Formally, this "identification" is just a quotient by the equivalence relation R on X defined by $(n, m) R (k, l) : \iff nl = km$.

One easily checks that R is an equivalence relation, and we denote the quotient X/R by \mathbb{Q} . We also denote the R -class of (n, m) by

$$\frac{n}{m} := [(n, m)]_R,$$

so of course, $\frac{1}{2} = [(1, 2)]_R = [(-7, -14)]_R = \frac{-7}{-14}$. Also, the map $\mathbb{Z} \rightarrow \mathbb{Q}$ by $n \mapsto \frac{n}{1}$ is an injection and we simply identify \mathbb{Z} with its image in \mathbb{Q} , so we consider \mathbb{Z} as a subset of \mathbb{Q} .